
 

1 
 

Numerical simulation of the damped and undamped double pendulum 

systems using MATLAB 

George Luther (13528904) 

School of Physics and Advanced Materials, University of Technology, Sydney, 15 Broadway, Ultimo, New 

South Wales 2007, Australia 

E-mail: George.Luther-1@student.uts.edu.au  

Date: 10/06/2020 

Abstract 

This investigation aims to demonstrate the chaotic nature of the damped and undamped cases for a double 

pendulum system through numeric simulation. The parameters which were varied in this simulation are the 

pendula lengths, masses of the two bobs, the acceleration due to gravity and, the initial angles of the 

pendula. Damping is introduced in the form of air resistance on each rod; these constants lower the total 

energy of the system over time. In the computer program, each 2nd order ODE was broken up into two 

respective 1st order ODE’s that were used in the algorithm. The 4th order Runge-Kutta algorithm was 

ultimately used as the numeric integrator for the two 2nd order ODE’s introduced governing the motion of 

each pendulum arm. The simulation produced results that differed drastically with small initial angle 

deviations, which is to be expected in such chaotic systems. The numerical solution was validated based on 

the assumption of constant energy in the underdamped case. 

 

Nomenclature 

𝑚1 mass of pendulum 1 (kg) 

𝑚2  mass of pendulum 2 (kg) 

𝑙1 arm-length of pendulum 1 (meters) 

𝑙2 arm-length of pendulum 2 (meters) 

𝑡 time (seconds) 

𝜙1 the angular displacement of pendulum 1 (radians) 

𝜙2 the angular displacement of pendulum 2 (radians) 

�̇�1 angular velocity of pendulum 1 (rad/s) 

�̇�2 angular velocity of pendulum 2 (rad/s) 

�̈�1 angular acceleration of pendulum 1 (rad/s2) 
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�̈�2 angular acceleration of pendulum 2 (rad/s2) 

𝑘1 damping constant of pendulum one due to air resistance (dimensionless constant) 

𝑘2 damping constant of pendulum two due to air resistance (dimensionless constant) 

 

1. Aim and Motivation 

This project demonstrates chaotic motion due to the sensitivity of the initial conditions which govern its 

behavior. Many systems in the universe behave in this chaotic way, and we rely on numeric simulations to 

help visualize and interpret them as there may be no clear analytical solution for that problem currently. 

Numerical integrators such as the 4th order Runge-Kutta (RK4) algorithm is one such example of a 

numerical approximation to an analytical solution by inputting two uncoupled 2nd order ODEs that describe 

the motion of the system in the case for a double pendulum. The MATLAB code will be able to be modified 

to simulate the movement of other chaotic systems with 2nd order ODEs by replacing the differential 

equations used in this model with the new system’s ODEs. 

This project aims to simulate the chaotic nature of a double pendulum system with varying initial conditions 

to help visualize the problem further and its sensitivity to initial conditions. The effect of air resistance was 

demonstrated in this model through the damping constants, 𝑘1 and 𝑘2 that are multiplicative on the angles 

and are dimensionless for simplicity in the numerical application. 

2. Introduction 

Chaos theory is the unpredictability of a system based on initial conditions that were imposed upon it. It is 

difficult to visualize such nonlinear systems, such as the three-body planetary motion problem, as there are 

no clear analytical solutions to most of these problems. The double pendulum is one example of a chaotic 

motion system that does not have an analytical solution, which is why we rely on a numerical model [1-2]. 

 

One such method of producing a numerical solution is by using the MATLAB function, ODE45. This 

function uses the 4th order Runge-Kutta method and takes one single 2nd order ODE as an input, 

transforming it into a single 1st order differential equations. However, one way to use the ODE45 is to 

introduce a state-space vector taking both angular displacements and angular velocities as elements, being 

a 4x1 matrix [2]. However, this eliminates the versatility of the code, where it is applied to other chaotic 

systems such as the three-body problem by defining new variables and re-writing the equations of motion. 

This versatility is the justification for using the RK4 method directly in the MATLAB script apart from its 

simplicity, analogous to using state-space vector form. 
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Because this system does not have an analytical solution, much like other chaotic systems [2], it is difficult 

to conduct a validity check to test the accuracy of the behavior of the nonlinear system. Therefore, basic 

laws of physics must be applied to the system to verify the validity. The simulation is valid by our definition 

if the following rules apply: 

1) If the mass of the first bob is larger than that of the second bob, i.e. 𝑚1 > 𝑚2: The double-pendulum 

system should have a massive transfer of momentum from 𝑚1 to 𝑚2, causing the second rod to 

complete multiple revolutions while the motion of the first rod is hindered due to its large mass. 

This behavior is due to the first rod’s enormous angular momentum being imposed on the second 

rod, whereas the second rod will have little momentum to transfer due to its low bob mass. 

2) When the arm of the second pendulum is larger than the length of the first rod, i.e. 𝑙2 > 𝑙1 then the 

system should behave like a simple pendulum with periodic oscillations.  

3) Similar to step 1) when the mass of the second pendulum bob is larger than the mass of the first 

bob, i.e. 𝑚2 > 𝑚1 then the system should behave like a simple pendulum with periodic oscillations. 

4) For the damped case, that is, where 0 < 𝑘1, 𝑘2 < 1 then the system will eventually come to a stop. 

As this damping constant gets smaller, the rate of energy dissipation will be more significant. This 

will be tested twice. 

5) The total energy of the system, 𝐸 = 𝑇 + 𝑉, should be a constant value if there are no damping 

factors present. That is, 𝑘1 = 1 and 𝑘2 = 1. Because of no energy dissipation in the system, it will 

continue its motion infinitely. 

6) At initial angles of 𝜙1, 𝜙2 = 0° the pendula should remain stationary with no motion present. If 

motion occurs, it is due to a term that does not rely on the angle array inside for the function, which 

then suggests that our equation is incorrect. This case provides no useful information about the 

result, and the visualization is trivial. Therefore, it is left for the reader to understand this 

themselves. 

These rules will apply to the double pendulum system and will be used in the Discussion section of this 

report to verify the validity of the simulation.  

3. Background Theory 

 

3.1. The Euler-Method 

When the mathematics of a system is too complicated or when there is no real analytical solution, we must 

rely on numerical integrators such as the Euler-Method to simulate these problems. The two numeric 

methods that will be discussed in this section of the report are the Euler method and the Runge-Kutta family 



 

4 
 

of numeric integrators. The Euler-Method takes the definition of the derivative as a  from Newton’s first 

principles as: 

𝑣(𝑡) =
𝑑𝑥

𝑑𝑡
= lim

ℎ→0
(
𝑥(𝑡 + ℎ) − 𝑥(𝑡)

ℎ
) 

By getting rid of the limit, we introduce the error term 𝑂(ℎ𝑛), which means we ignore every order past the 

first order, and it is known as the truncation error. Thus, making the Euler Method a linear numerical 

integrator. Continuing with the derivation, 

𝑑𝑥

𝑑𝑡
≈
𝑥(𝑡 + ℎ) − 𝑥(𝑡)

ℎ
+ 𝑂(ℎ𝑛) 

Then, the difference equation is, therefore obtained through the use of finite approximation: 

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑥𝑛) 

Where 𝑓(𝑥𝑛) is a 1st order ODE. The Euler-Method is a linear numeric integrator, which means that it is 

accurate to the order of the step-size, ℎ that one specifies into the code. This method was not used here, and 

the RK4 algorithm was used instead as this method is accurate to four orders of magnitude (104) higher 

than ℎ. The order of accuracy due to step-size is because of the Taylor-Series Expansion of the RK4 

algorithm using the first four terms of the Taylor Series, analogous to the Euler-Method that uses the first 

term. 
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3.2. The Runge-Kutta Family of Numeric Integrators 

The Runge Kutta method is a numeric integrator which calculates the slope of a given function between 

separate time intervals, 𝑡𝑖 and 𝑡𝑖+1 where ℎ = 𝑡𝑖+1 − 𝑡𝑖. Higher orders of the Runge-Kutta method, say RK-

N calculate the slope of a function using a moving average 𝑁 times between 𝑡𝑖 and 𝑡𝑖+1 and it is accurate 

based on ℎ to the order of 10𝑁 [5]. 

Figure. 1 demonstrates the first-order Runge-Kutta 

algorithm, which uses a single slope to approximate 

the numerical solution for this nonlinear function. 

As seen, the time-step ℎ must be extremely small to 

achieve a numeric solution that is close to that of the 

analytical one where ℎ shown in the Figure is not 

sufficient enough to estimate the analytical solution. 

The higher order of Runge-Kutta corresponds to an 

increase in linear slopes, which leads to an increase 

in accuracy due to these slopes compensating for 

the large ℎ. The RK4 algorithm uses four linear 

gradients, minimizing the truncation error 𝑂(ℎ𝑛). 

The RK4 algorithm takes the general form… 

𝑦𝑡+1 = 𝑦𝑡 + ℎ(𝑎1𝐾1 + 𝑎2𝐾2 + 𝑎3𝐾3 + 𝑎4𝐾4) + 𝑂(ℎ
5) 

Where 𝑎𝑖 corresponds to the weights that the 𝐾𝑖 slope value holds. Finally, because we are using the first 

four terms of the Taylor-Series expansion, our time-step is fourth-order accurate. Fourth-order means that 

if ℎ = 10−2, our accuracy will be to the order of 10−8. 

For the Classical Runge-Kutta 4 algorithm, these weights are as follows. These weights were obtained 

through tedious algebra: 

𝑦𝑡+1 = 𝑦𝑡 +
ℎ

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) 

Using 𝐹(𝑦, 𝑡) as the function, 

𝐾1 = 𝐹(𝑦𝑡 , 𝑡𝑖)   

𝐾2 = 𝐹 (𝑦𝑡 +
ℎ

2
𝐾1, 𝑡𝑖 +

ℎ

2
)   

Figure. 1. The Runge-Kutta method of first-order as 

an example. 

𝑂(ℎ𝑛) 



 

6 
 

𝐾3 = 𝐹 (𝑦𝑡 +
ℎ

2
𝐾2, 𝑡𝑖 +

ℎ

2
)  

𝐾4 = 𝐹(𝑦𝑡 + ℎ𝐾3, 𝑡𝑖 + ℎ)   

The Runge-Kutta method has its drawbacks when it comes to requiring uncoupled differential equations. 

Algebra is used to uncouple a set of differential equations, namely the process of simultaneous equations 

to eliminate relating terms between the two equations. 

 

3.3. The Motion of the Double Pendulum 

The basic model of the double pendulum appears in Figure 2. For the simulation conducted in this paper. 

The variables used are labeled here and defined (see Nomenclature). The assumptions made for this 

simulation are: 

• Uniformly distributed point-masses, i.e., the volume of the bobs were not pre-defined and instead 

treated as points in space having mass. 

• The mass of each pendulum is assumed to be massless; otherwise, if they were not, there will only 

be a minuscule change in the center of masses leaning towards the rod. 

• The pendula are attached to a stationary block where they can move an entire revolution without 

causing a collision with the block. 

Damping constants, 𝑘1and 𝑘2 were introduced (see Appendix B), which lower the total energy of the 

system over time. These constants have a value between 0 and 1, where there is no energy loss due to 

damping when 𝑘1, 𝑘2 = 1  
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Figure 2. A diagram of the double pendulum system. 

The equations of motion used to demonstrate the behavior in Figure 2. are: 

{
 
 

 
 �̈�1 =

(−𝑔(2𝑚1 +𝑚2) sin(𝜙1) − 𝑚2𝑔𝑠𝑖𝑛(𝜙1 − 2𝜙2) − 2 sin(Δ𝜙)𝑚2(�̇�2
2𝑙2 + �̇�1

2𝑙1 cos(Δ𝜙))

𝑙1(2𝑚1 +𝑚2 −𝑚2 cos(2Δ𝜙))
  

�̈�2 =
(2 sin(Δ𝜙) × �̇�1

2𝑙1(𝑚1 +𝑚2) + 𝑔(𝑚1 +𝑚2) × cos(𝜙1) + �̇�2
2𝑙2𝑚2 × cos(Δ𝜙)

𝑙2(2𝑚1 +𝑚2 −𝑚2 cos(2𝛥𝜙))

 

The process of obtaining these two equations is seen in Appendix A. The damping constants were not 

implemented in the equations of motion but instead were used in the RK4 for-loop where the integrated 

angular velocities, �̇�1 and �̇�2 were decreased by a factor of 𝑘1 and 𝑘2 at each time step, respectively. 

4. Simulation Details and Validation: 

The validation of this model, which was mentioned in the introduction, will be tested in this section. If the 

conclusions on validity are in-line with the outputs, then it is reasonable to suggest that the model works 

fine, and there are no clear errors. The purpose of this validation section is to verify that the result is 

correct as there is no clear analytical solution, so such extreme plots are used with proper reasoning 

to justify that the code is working fine. The cases for a validity check are tabulated below, which are the 

details on simulation from variables that will be adjusted (Table. 1.). Four cases will be examined here and 

discussed: 
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Table. 1. The parameters used for each case to test the validity and results in this process. 

Parameter Case 1 Case 2 Case 3 Case 4 

Number of data points, 𝑛 6667 6667 6667 6667 

Step size, ℎ 0.009 0.009 0.009 0.009 

length of rod 1, 𝑙1 1 1 1 1 

length of rod 2, 𝑙2 1 5 1 5 

mass of bob 1,𝑚1 5 1 3 10 

mass of bob 2,𝑚2 1 1 1 1 

gravitational constant, 𝑔 9.81 9.81 9.81 9.81 

Initial angular velocity of rod 1, �̇�1 0 0 0 0 

Initial angular velocity of rod 2, �̇�2 0 0 0 0 

The initial angle of rod 1, 𝜙1 
𝜋

4
 𝜋 

𝜋

4
 

𝜋

4
 

The initial angle of rod 2, 𝜙2 
𝜋

2
 

𝜋

4
 

𝜋

2
 

𝜋

2
 

Damping constant of rod 1, 𝑘1 1 1 0.999 0.999 

Damping constant of rod 2, 𝑘2 1 1 1 0.999 

 

5. Results and Discussion: 

5.1. Case 1: The mass of the first bob is bigger than that of the second, 𝒎𝟏 > 𝒎𝟐: 

Figure. 3. The phase portrait of the angular 

displacement for Case 1. 

Figure. 4. The phase portrait of the angular 

velocity for Case 1. 
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For Case 1 (𝑚1 ≫ 𝑚2), Figures 3 and 4 demonstrate the phase portraits of each pendulum. Because the 

contours clumped in the plot, these phase portraits thereby indicate that the system is unstable and follows 

a wide range of paths, i.e., there is no clear path that the system takes. Figure. 5. Takes a look at the 

trajectory plot of the double pendulum due to 𝑚1 = 5𝑘𝑔. As seen, the system behaves chaotically and 

because of the mass variable that is 𝑚1 = 5 ×𝑚2, there is chaotic motion present as the angular momentum 

exerted onto rod 2 from rod 1 is larger than the angular momentum exerted from rod 1 onto rod 2. Because 

of this, rod 1 will keep oscillating with an approximate periodicity while the energy that rod 2 experiences 

Figure. 5. The trajectory plot for the double pendulum 

for Case 1. 

Figure. 6. The changing angles and angular velocities w.r.t time for Case 1. 
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will allow for a noticeable deviation in angles. Figure. 6 illustrates this precisely in the angular 

displacements plot where rod 1 is oscillating periodically while rod 2 is chaotic. 

5.2. Case 2: The increase in 𝒍𝟐 as 𝒍𝟐 = 𝟓 × 𝒍𝟏 with initial angles 𝝓𝟏 = 𝝅 and 𝝓𝟐 =
𝝅

𝟒
: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 7. The phase portrait of the angular 

velocity for Case 2. 

 

Figure. 8. The phase portrait of the angular 

displacement for Case 2. 

 

Figure. 9. The trajectory plot for the double 

pendulum for Case 2. 
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Figures 7 and 8 show phase portraits for angular displacement and velocity for Case 2, respectively. 

Because of both figures appearing to be scattered, and there seems to be no correlation between �̇�1 and �̇�2 

or the angles. We conclude that there is no clear path that the phase portraits follow. Therefore, the system 

is deemed to be not stable. This is interpreted as the system not desiring these conditions imposed on it due 

to the unstable phase plots. 

When 𝑙2 > 𝑙1, theoretically, the second rod would behave like a simple pendulum (see Appendix C for the 

derivation of a simple pendulum) with no damping where rod 2 and rod 1 have minuscule effects on each 

other. In Figure 9, Case 2, the smaller length 𝑙1 will necessarily behave as an extended arm to the second 

pendulum, creating a simple pendulum case. The longer 𝑙2 is compared to 𝑙1, the more this simple pendulum 

will form, and fewer fluctuations will be seen in the trajectory plot. Rod 2 was behaving periodically 

between the initial condition of 𝜙𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝜋

2
𝑟𝑎𝑑𝑠. Figure. 10. shows the behavior of angular velocities 

over time. For the second rod, the similarities to the simple undamped pendulum are apparent. In contrast, 

the first rod shows slight variations due to the second rods swing, having a noticeable effect on the swing 

of the first rod. This swing was also due to the initial condition imposed initially of 𝜙1 = 𝜋 that started 

motion of the first rod upright. 

5.3.  Case 3: The increase in 𝒎𝟐 as 𝒎𝟏 = 𝟑𝒌𝒈 with damping constants 𝒌𝟏 = 𝟎. 𝟗𝟗𝟗 and 𝒌𝟐 = 𝟏 

at play. 

Figure. 10. The changing angles and angular velocities w.r.t time for Case 2. 
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Figure. 12. The phase portrait of the angular 

velocity for Case 3. 

 

Figure. 11. The phase portrait of the angular 

displacement for Case 3. 

 

Figure. 13. The Kinetic, Potential and total Energy vs. time plots where the energy is 

decreasing with time due to 𝒌𝟏 = 𝟎.𝟗𝟗𝟗 for Case 3. 
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Figure. 14. The trajectory plot for the double pendulum for Case 3. 

 

Figure. 15. The changing angles and angular velocities w.r.t time for Case 3, damping 𝒌𝟏. 
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Both phase portraits in Figures 11 and 12. Are centered about the origin and the concentric curves that are 

present get thicker and denser as (𝑥, 𝑦) → (0, 0). Therefore, these types of phase-portraits for angular 

velocity and displacement gives information on a damping system. Figure. 13 contains the total energy 

over time plot for the damped system (bottom of Figure. 13. ). This plot is reducing with an increase in 

time due to the damping factors at play here, 𝑘1 = 0.999. Figure. 14 shows the trajectory of pendulum 1 

and 2, where rod 2 is damped, and rod 1 is undamped. Because of this damping, the trajectory of rod 2 

becomes less spread despite the mass of rod 1, forcing rod 2 to be propelled, creating wide curves in the 

sides of the trajectory plot. Ultimately, the system is damped, and this is mainly seen further in Figure. 15, 

as the angular velocity and displacements are drastically being reduced over time. 

3.4 Case 4: The damping constants, 𝒌𝟏 𝒂𝒏𝒅  𝒌𝟐 = 𝟎. 𝟗𝟗𝟗 was introduced to demonstrate the 

damping of the whole system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 16. The phase portrait of the angular 

displacement for Case 4. 

Figure. 17. The phase portrait of the angular 

velocity for Case 4. 

Figure. 18. The Kinetic, Potential and total Energy vs. time plots where the 

energy is decreasing with time due to 𝒌𝟏,𝟐 = 𝟎. 𝟗𝟗𝟗 for Case 4. 
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Figure. 19. The Trajectory of the two-pendulum system while damping constants, 𝒌𝟏,𝟐 =

𝟎. 𝟗𝟗𝟗 are at play in Case 4. 

Figure. 20. The changing angles and angular velocities w.r.t time for Case 4, with damping 

constants, 𝒌𝟏,𝟐 = 𝟎. 𝟗𝟗𝟗. 
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In Case 4, Figures 16 and 17 show the phase portraits of the damped system and the behavior is to be as 

expected, where the phase portraits oscillate around the (𝑥, 𝑦) = (0,0) point, much like Case 3. However, 

the effect of damping is more dramatic here as another damping constant was introduced. There are fewer 

curves outside of the localized area that is at the origin, effectively making this solution converge to zero 

and not wandering around. From the phase portrait figures, it is gathered that the preferred state of this 

system with these conditions is (�̇�1, �̇�2, 𝜙1, 𝜙2) = 0. Further, Figure. 18 is a demonstration of the effects 

of 𝑘1 and 𝑘2 as the total energy of the system converges to the mean value. The trajectories of the pendula, 

as seen in Figure. 19, are hindered due to the damping constants, and it is far more like a simple pendulum 

analogous to Case 3. The angular velocities and displacements over time converge to zero. The whole 

system is brought to a complete stop. This stop is to be expected and verifies the case as damping the 

angular velocity means to reduce it as defined in the script. 

There are limitations in this numerical simulation, one such restriction being the step-size. By using the 

Runge-Kutta of the fourth-order, the solution gets more accurate for a decrease in step-size. That is if ℎ =

10−2, an RK4 algorithm will provide a reasonable solution to an order of 10−8. This algorithm can be 

improved to that of an RK8 algorithm or even higher. However, it is far more challenging to implement 

into the code. 

On another note, the processing power of the computer used to run simulations is limited, such that small 

step-sizes will take quite a while to implement into the code. If the processor of the computer that had run 

the script was improved such that it would work with extremely low step-sizes for ℎ, the accuracy of the 

simulation would be improved drastically. 

 

Conclusions: 

In conclusion, the RK4 algorithm was implemented into the double pendulum simulation used in this paper. 

The equations of motion were derived using the Lagrangian Formalism, and the differential equations were 

then uncoupled (see Appendix A for derivation). This analysis displayed the simulation of the double 

pendulum system along with respective plots that further helped describe the initial conditions and variables 

imposed upon it. This code was then validated through the use of the analysis of results to make sure they 

match up logically, as there is no clear analytical solution for this system. Finally, it is in hopes of the author 

that the simulation may help develop an understanding of the double pendulum system and chaotic motion 

for the reader. 
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Appendix A – Dynamics of the Double Pendulum System: 

Writing the coordinates for x and y in terms of the variables for 

the pendulum’s motion: 

𝑥1 = 𝑙1sin (𝜙1) 

𝑦1 = −𝑙1 cos(𝜙1) 

𝑥2 = 𝑙1 sin(𝜙1) + 𝑙2sin (𝜙2) 

𝑦2 = −𝑙1 cos(𝜙1) − 𝑙2cos (𝜙2) 

We obtain the relative velocities by differentiating 𝑥, 𝑦 positions 

with respect to time (ϕ = ϕ(t)): 

�̇�1 = �̇�1𝑙1cos(𝜙1) 

�̇�1 = �̇�1𝑙1sin(𝜙1) 

�̇�2 = �̇�1𝑙1 cos(𝜙1) + �̇�2𝑙2sin(𝜙2) 

�̇�2 = �̇�1𝑙1 sin(𝜙1) + �̇�2𝑙2sin (𝜙2) 

Then the kinetic energy, 𝑇, is: 

𝑇 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 =
1

2
𝑚1(�̇�1

2 + �̇�1
2)2 +

1

2
𝑚2(�̇�2

2 + �̇�2
2) 

Substituting, 

𝑇 =
1

2
𝑚1[�̇�1

2𝑙1
2 (cos2(𝜙1) + sin

2(𝜙2))] +
1

2
𝑚2[(�̇�1𝑙1 cos(𝜙1) + �̇�2𝑙2sin(𝜙2))

2

+ (�̇�1𝑙1 sin(𝜙1) + �̇�2𝑙2 sin(𝜙2))
2
] 

Then, using trig. Identity of (cos2(𝜙1) + sin
2(𝜙2)) = 1; 

𝑇 =
1

2
𝑚1�̇�1

2𝑙1
2 +

1

2
𝑚2[�̇�1

2𝑙1
2(cos2𝜙1 + sin

2𝜙2) + �̇�2
2𝑙2
2(cos2𝜙2 + sin

2𝜙2)

+ 2𝑙1𝑙2�̇�1�̇�2(𝑐𝑜𝑠𝜙1𝑐𝑜𝑠𝜙2 + sinϕ1𝑠𝑖𝑛𝜙2)] 

We may further simplify our total kinetic energy to: 

𝑇 =
1

2
𝑚1𝑙1

2�̇�1
2 +

1

2
𝑚2(𝑙1

2�̇�1
2 + 𝑙2

2�̇�2
2 + 2𝑙1𝑙2�̇�1�̇�2cos (𝜙1 − 𝜙2) 

Figure 2. A diagram of the double 

pendulum system. 
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The total potential energy is the more trivial case 

𝑉 = 𝑔𝑚1𝑦1 + 𝑔𝑚2𝑦2 

Substituting, 

𝑉 = −(𝑚1 +𝑚2)𝑔𝑙1cosϕ1 −𝑚2𝑔𝑙2𝑐𝑜𝑠𝜙2 

Using the Lagrangian, 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0 

We have already stated that we will use 𝜙1 and 𝜙2 as generalized coordinates, 𝑞𝑖. Then, we define Δ𝜙 =

𝜙1 − 𝜙2 for compactness, 

For equation (1): 

𝜙1: (𝑚1 +𝑚2)𝑙1�̈�1 +𝑚2𝑙2�̈�2 cos(Δ𝜙) + 𝑚2𝑙2�̇�2
2 sin(Δ𝜙) + 𝑔(𝑚1 +𝑚2)𝑠𝑖𝑛𝜙1 = 0  

Rearranging in terms of �̈�1, 

�̈�1 = [−𝑚2𝑙2�̈�2 cos(Δ𝜙) − 𝑚2𝑙2�̇�2
2 sin(Δ𝜙) − 𝑔(𝑚1 +𝑚2)𝑠𝑖𝑛𝜙1] ×

1

𝑙1(𝑚1+𝑚2)
              (1) 

For equation (2): 

𝜙2: 𝑚2𝑙2�̈�2 +𝑚2𝑙1�̈�1 cos(Δ𝜙) −𝑚2𝑙1�̇�1
2 sin(Δ𝜙) +𝑚2𝑔𝑠𝑖𝑛𝜙2 = 0.   

Rearranging in terms of  �̈�2, 

�̈�2 = [−𝑚2𝑙1�̈�1 cos(Δ𝜙) + 𝑚2𝑙1�̇�1
2 sin(Δ𝜙) − 𝑚2𝑔𝑠𝑖𝑛𝜙2] ×

1

𝑙2𝑚2
                (2) 

The above equations, (1) and (2) are describing the motion of the chaotic system for 𝜙1 and 𝜙2 as 

generalized coordinates. These equations must then be uncoupled such that �̈�1 does not depend on �̈�2, this 

is done through the process of substitution: 

Now, we must uncouple the equations by substituting (1) into (2): 

For �̈�1, 

�̈�1 =
1

𝑙1(𝑚1 +𝑚2)
[(−𝑚2𝑙2cos (Δ𝜙)(−𝑚2𝑙1�̈�1 cos(Δ𝜙) + 𝑚2𝑙1�̇�1

2 sin(Δ𝜙) − 𝑚2𝑔𝑠𝑖𝑛𝜙2) ×
1

𝑙2𝑚2

−𝑚2𝑙2�̇�2
2 sin(Δ𝜙) − 𝑔(𝑚1 +𝑚2)𝑠𝑖𝑛𝜙1] 
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(4) 

Expanding and simplifying, 

�̈�1 =
�̈�1𝑚2 cos

2(Δ𝜙)

𝑚1 +𝑚2
−
𝑚2𝑙1�̇�1

2 sin(Δ𝜙) cos (Δ𝜙)

𝑚1 +𝑚2
+
𝑔𝑚2 sin(𝜙2)cos (Δ𝜙)

𝑙1(𝑚1 +𝑚2)
−
𝑚2𝑙2�̇�2

2 sin(Δ𝜙)

𝑙1(𝑚1 +𝑚2)

−
𝑔

𝑙1
𝑠𝑖𝑛𝜙1 

Gathering �̈�1 terms and simplifying further, we get: 

�̈�1 = [1 −
𝑚2 cos

2(Δ𝜙)

𝑚1 +𝑚2
]

−1

(−
𝑚2𝑙1�̇�1

2 sin(Δ𝜙) cos(Δ𝜙)

𝑚1 +𝑚2
+
𝑔𝑚2 sin(𝜙2) cos(Δ𝜙)

𝑙1(𝑚1 +𝑚2)
−
𝑚2𝑙2�̇�2

2 sin(Δ𝜙)

𝑙1(𝑚1 +𝑚2)

−
𝑔

𝑙1
𝑠𝑖𝑛𝜙1) 

As for �̈�2:  

�̈�2 = [−�̈�1 cos(Δ𝜙) + �̇�1
2 sin(Δ𝜙) −

𝑔

𝑙1
𝑠𝑖𝑛𝜙2] ×

𝑙1
𝑙2

 

Where �̈�1 is defined above for �̈�2. Therefore, these two equations have been coupled as �̈�1 and �̈�2 are not 

dependent on each other. These two differential equations may now be implemented into the Runge-Kutta 

algorithm. 

These two uncoupled equations were for �̈�1 and �̈�2 were further simplified after a lot of algebra using 

trigonometric properties and computational algebra [4]. The below differential equations were used in the 

MATLAB code for the RK4 algorithm. However, using equations (3) and (4) would suffice but be less 

compact: 

�̈�1 =
(−𝑔(2𝑚1+𝑚2) sin(𝜙1)−𝑚2𝑔𝑠𝑖𝑛(𝜙1−2𝜙2)−2sin(Δ𝜙)𝑚2(�̇�2

2𝑙2+�̇�1
2𝑙1 cos(Δ𝜙))

𝑙1(2𝑚1+𝑚2−𝑚2 cos(2Δ𝜙))
              (5) 

And, 

�̈�2 =
(2 sin(Δ𝜙)×�̇�1

2𝑙1(𝑚1+𝑚2)+𝑔(𝑚1+𝑚2)×cos(𝜙1)+�̇�2
2𝑙2𝑚2×cos(Δ𝜙)

𝑙2(2𝑚1+𝑚2−𝑚2 cos(2𝛥𝜙))
             (6) 

 

Appendix B – Introducing Damping Constants 

The damping constants, 𝑘1 and 𝑘2 were introduced in the code through implementation inside the Runge-

Kutta for-loop. 𝑘1 and 𝑘2 are damping constants, holding a value between 0 and 1, where 1 suggests no 

damping and 0 suggests maximum damping. With iteration inside the for-loop, angular velocity is equal to 
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itself multiplied by its respective damping constant. Damping constants of 𝑘1, 𝑘2 = 0.999 were used here 

as they helped visualize the effect of an underdamped case without critically damping the system at an early 

stage. 

The damping constants incorporated in the MATLAB script: 

Below is the implementation of the damping constants in the MATLAB script: 

 

 

 

 

Appendix C – The Simple Pendulum 

For this simple pendulum case [6]  (Figure. 21.), it is 

evident that the force due to gravity that drives the 

pendulum’s motion is: 

𝐹 = −𝑚𝑔𝑠𝑖𝑛(𝜃) 

Then, using Newton’s 2nd Law: 

−𝑚𝑔𝑠𝑖𝑛(𝜃) = 𝑚�̈� 

−𝑔𝑠𝑖𝑛(𝜃) = �̈� 

Where �̈� is the acceleration of the pendulum’s bob over its radial trajectory. The rod makes an angle 

with the vertical during its motion that is given by: 

𝑟 = 𝑙𝜃 

At any time during its motion. Therefore, differentiating this expression yields: 

�̈� = 𝑙�̈� 

Substituting this radial acceleration into the force equation, 

−𝑔𝑠𝑖𝑛(𝜃) = 𝑙�̈� 

Therefore, 

Figure. 21. The Simple Pendulum sketch. 
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�̈� = −
𝑔

𝑙
𝑠𝑖𝑛(𝜃) 

Because this is a second-order ODE that describes the motion of this system, we must separate it using 

the finite differences on the definition of the derivative: 

      𝑣 = �̇�               (1) 

Therefore, 

     �̇� = −
𝑔

𝑙
sin (𝜃)               (2) 

Then, the Euler-method is introduced here: 

𝑣(𝑡 + Δ𝑡) − 𝑣(𝑡)

Δ𝑡
= −

𝑔

𝑙
sin (𝜃) 

Here, we convert Newton’s first principle definition of the derivative into a form that is suitable for 

numerical integration with the Euler-Method after rearranging and making Δ𝑡 → 0 as our time-step. 

𝐸𝑢𝑙𝑒𝑟 𝑓𝑜𝑟 − 𝑙𝑜𝑜𝑝 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ϵ {
𝑣(𝑛 + 1) = 𝑣(𝑛) − Δ𝑡

𝑔

𝑙
sin (𝜃)

𝜃(𝑛 + 1) = 𝜃(𝑛)
 

These two arrays may then be input into the for-loop for the Euler-method (Figure. 22.): 
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The Euler-method was then implemented; however, the angle increased with respect to the time when 

no damping factors had been present. This is due to the order of accuracy that this method provides. 

Then, an RK4 algorithm was implemented, and the accuracy had increased dramatically with the same 

step-size, as shown below… (Figure. 23.) 

 

 

 

 

 

 

Figure. 22. The angle deviations with respect to time of the simple pendulum. Here, the 

simple pendulum exhibits an increase in the angle over time and this is not desired. 
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The damping constant, in the form of 𝑘 was implemented into the script the same way as it was added 

for the double pendulum inside the Runge-Kutta for-loop (see Appendix A). The simple pendulum case 

also had an analytical solution which takes the form: 

�̈� = −𝜃0
𝑔

𝑙
× cos (√

𝑔

𝑙
𝑡) 

This way, the numerical solution may be validated, and it had been verified with the code provided in 

Appendix E. However, it may have to be uncommented to see a full comparison. 

 

 

Figure. 23. The Runge-Kutta 4th order algorithm used for the simple pendulum case. This 

numerical integrator proved to be far more accurate than the Euler-method as  it is not a 

linear integrator like the Euler-method but accurate to orders of 4 magnitudes (104). 
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Appendix D – Activity Log and Project Management 

The project spanned over six weeks, as below. 

Week Description 

1 This week I tried deriving the equations of motion for a double pendulum, the result was 

verified with the book, Landau and Lifshitz Classical Mechanics [1] where they did a similar 

derivation. Knowledge of Classical Mechanics that I had taken last semester was beneficial 

here as we did have a homework problem relating to the equations of motion of a double 

pendulum. This problem from last semester helped to justify the derivation as they followed 

the same procedure. Simultaneously, I was working on the simple pendulum simulation. 

2 The simulation of the simple pendulum was commenced using the Euler method. I had run 

into a problem earlier, however, using the sind function instead of the sin function while 

inputting the initial angle as 𝜙(𝑟𝑎𝑑𝑠) instead of degrees. Also, I figured out that I could 

choose not to use the movie function, which is a built-in MATLAB animation function, and 

instead stuck to indexing the results in a for-loop with the plot function and then using the 

drawnow feature to command MATLAB to make an animation. 

3 This week, the simple pendulum works fine with the Euler-method, the RK2 and RK4 

methods are implemented this week, and the implementation was quite trivial, it is a 

numerical integrator that takes moving averages. The damping constant, 𝑘 was also 

introduced, and this damping constant was inserted into the code as a number between 0 and 

1, this way if the damping constant is 0.99 for instance, the 𝜙(𝑖 + 1) value will decrease by 

a factor of 0.99 after each iteration in the for-loop. Eventually, causing the pendulum to stop 

at a halt. Furthermore, the num2str function was discovered, and it was inserted into the plot 

to show the time at each frame in the animation, I made this the title by using “time =” + 

num2str(t). There was a problem with the angle plot as it was damping with a low time-step. 

However, this was later resolved as I had made a typo in the code, and this was fixed to have 

constant angles. 

4 The double pendulum was started this week. The simple pendulum code was modified to 

satisfy the double pendulum. I added two angles in here instead of the single angle for the 

simple pendulum. I had to verify the equations of motion, and it turned out that they were 

correct, but I had implemented them incorrectly using the RK4 algorithm, so I started with 

the RK2 method for the double pendulum simulation in this case. It turns out that you cannot 

separate functions into multiple lines of code. Otherwise, the system will not behave the way 

it is supposed to. I had written the function in multiple lines to make the code more compact. 

However, this was fixed in a later step when I was debugging the code and had tried writing 

it in a single line. This had got the animation to start working, and I was pleased with the 

result. 

5 After the animation was working for the double pendulum, associated plots were included. 

Firstly, the angle vs. time plot from the simple pendulum case was included and implementing 

it for the double pendulum system was trivial because all I had to do was add a hold on 

command to plot the second angle over time in the same plot to show the angular displacement 

of the double pendulum system over time. Also, the angular velocities with respect to time 

plot was added in for more useful information about the system. After all these outputs, the 

damping constants for the two-pendulum system were added in a similar way to that of the 

damped simple pendulum case but this time reducing the angular velocities of 𝜙1 and 𝜙2 

separately, this essentially makes one of the rods damp more or damp equally. I did this 

mainly for the second rod as it will be traveling faster if it has a longer arm length. 
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6 This week, I started writing up the report, including validity checks for the simulation. One 

such validity check was that for total Energy vs. Time, the total energy should be constant 

across the entire time array as the kinetic and potential energies. Of course, there were small 

deviations from the actual constant Energy value of E = T + V due to background noise and 

the limitations of the time-step due to the computational processing power. Comments were 

added onto the code this week also to help a new user run the code and overall make it look 

more presentable. 

 

Appendix E – Full Code for the Pendula Systems that were studied: 

E1 – The Euler Method for the Simple Pendulum: 

##%% Computational Physics: Simple Pendulum using pause() in a for-loop. 

clc; close all; clear all; 

 

t = linspace(0, 60, 10000); % This is time unit with 3600 values from 0 to 60. 

dt = t(2) - t(1) 

x = zeros(length(t), 1); 

y = zeros(length(t), 1); 

l = 10; % Length of stick (mass holders). 

g = 9.81; % Gravitational acceleration on Earth. 

m = 1; % The mass is a point mass and it is 1 unit. 

initial_thi = 45*(pi/180); % Specify an initial thi value in degrees. 

thi = linspace(-45, 45, length(t)) 

thi(1) = initial_thi; 

alpha(1) = 0; % Angular velocity. 

omega(1) = 0; % Angular acceleration. 

 

for i = 1:length(t) - 1 

  alpha(i + 1) = alpha(i) - (g/l)*sin(thi(i))*dt; 

  thi(i + 1) = thi(i) + dt*alpha(i); 

  x = l*sin(thi); 

  y = -l*cos(thi); 

end 

 

plot(t, thi) % This method was implemented. However, it did not produce a desired result. 

xlabel('time (s)') 

ylabel('\theta') 

title('\theta vs. time') 
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E2 – The RK4 Algorithm for the Damped and Undamped SIMPLE Pendulum: 

%% RK4 Method (alpha, theta in single loop) seperate loop for plotting after 

 

clear all; clc; close all; 

 

t = linspace(0, 60, 100); % This is time term, may increase or decrease speed. 

dt = t(2) - t(1) 

x = zeros(length(t), 1); 

y = zeros(length(t), 1); 

l = 10; % Length of stick (mass holders). 

g = 9.81; % Gravitational acceleration on Earth. 

m = 1; % The mass is a point mass and it is 1 unit. 

initial_thi = 45*(pi/180); % Specify an initial thi value in degrees. 

thi(1) = initial_thi; 

v = zeros(length(t), 1); % The alpha value which is d(thi)/dt. 

v(1) = 0 % alpha is the angular velocity. 

 

% RK4 functions 

f1 = @(t, thi, v) v; % This is the saying d(thi)/dt = v 

f2 = @(t, thi, v) -g/l * sin(thi); % v = secondDerivative of thi... 

% f2 = @(t, thi, v) -initial_thi*g/l * cos(sqrt(g/l)*t); IS THE ANALYTICAL SOLUTION. 

h = dt; % dt = t(2) - t(1) from previous line of code. 

 

k = 1; % Damping constant (between 0 and 1), aka. \mu. 

% RK4 loop and animation 

for i = 1:length(t) - 1 

  K1thi = f1(t(i), thi(i), v(i)); 

  K1v = f2(t(i), thi(i), v(i)); 

  K2thi = f1(t(i) + h/2, thi(i) + h*K1thi/2, v(i) + h*K1v/2); 

  K2v = f2(t(i) + h/2, thi(i) + h*K1thi/2, v(i) + h*K1v/2); 

  K3thi = f1(t(i) + h/2, thi(i) + h*K2thi/2, v(i) + h*K2v/2); 

  K3v = f2(t(i) + h/2, thi(i) + h*K2thi/2, v(i) + h*K2v/2); 

  K4thi = f1(t(i) + h, thi(i) + h*K3thi, v(i) + h*K3v); 

  K4v = f2(t(i) + h, thi(i) + h*K3thi, v(i) + h*K3v); 

  thi(i + 1) = thi(i) + h/6 * (K1thi + 2*K2thi + 2*K3thi + K4thi); 
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  v(i + 1) = v(i) + h/6 * (K1v + 2*K2v + 2*K3v + K4v); 

  v(i + 1) = k*v(i + 1); % Damped simple Pendulum, set k = 1 if undamped is wanted. 

end 

 

%% Figure. 2. shows the varying thi value w.r.t time. 

figure(1) 

plot(t, thi, 'b'); 

xlabel('Time (s)') 

ylabel('thi value') 

title('thi value over time') 

 

for i = 1:length(t) - 1 

  % The animation of the simplePendulum is as follows... 

  x = l*sin(thi); 

  y = -l*cos(thi); 

  figure(2) 

  plot(l*sin(thi(i)), -l*cos(thi(i)), 'ko', 'MarkerSize', 15); % It is a uniform mass with size 15. 

  hold on 

  line([0 l*sin(thi(i))], [0 -l*cos(thi(i))]) % Generates a line, gave it the i-th value of... 

  % ... the array to make a new line at every point for the animation. 

  plot(0, 0, 'ro') % Demonstrating it is in fact a fixed origin. 

  hold off 

  grid on 

  xlim([-l-1 l+1]) 

  ylim([-l-1 l+1]) 

  title(['t = ' num2str(t(i)) ', \mu = ' num2str(k)]); 

  drawnow; 

end 
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E3 – The RK4 Algorithm for the Damped and Undamped Double Pendulum: 

clc; clear all; close all; 

 

% Variables: 

r1 = 1; % Length of pendulum 1 

r2 = 1; % Length of pendulum 2 

m1 = 1; % Mass on pendulum 1 

m2 = 1; % Mass on pendulum 2 

g = 9.81; 

 

dt = 0.009; 

t = [0:dt:60]; 

a1 = zeros(1, length(t)); 

a2 = zeros(1, length(t)); 

 

a1(1) = 45*(pi/180); 

a2(1) = 45*(pi/180); % {a1, a2} = pi rads (upside down) for good example of E. 

a1p = zeros(1, length(t)); 

a2p = zeros(1, length(t)); 

a1p(1) = 0; 

a2p(1) = 0; 

% The two equations for angular acceleration; fun_1 and fun_2: 

fun_1 = @(t, a1p, a2p, a1, a2) (-g*(2*m1 + m2) * sin(a1) - m2*g*sin(a1 - 2*a2) -2*sin(a1-a2)*m2*(a2p*a2p * r2 + a1p*a1p*r1*cos(a1-

a2)))/(r1*(2*m1 + m2 - m2 * cos(2*a1-2*a2))); 

fun_2 = @(t, a1p, a2p, a1, a2) (2*sin(a1-a2)*(a1p.*a1p * r1*(m1+m2) + g*(m1 + m2)*cos(a1)+a2p.*a2p * r2*m2*cos(a1-a2)))/(r2 * (2*m1 + 

m2-m2*cos(2*a1-2*a2)));                                         

F1 = @(t, a1p, a2p, a1, a2) a1p;                  

F2 = fun_1; 

G1 = @(t, a1p, a2p, a1, a2) a2p; 

G2 = fun_2; 

 

h = dt; % For the RK2 loop: 

k1 = 1; % Damping constant, k_1 for angular velocity 1. ki -> 0 is more damping. 

k2 = 1; % Damping constant, k_2 for angular velocity 2. 

for i = 1:(length(t)-1)                              

    K1a1 = h*F1(t(i), a1p(i), a2p(i), a1(i), a2(i)); 
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    K1a1p = h*F2(t(i), a1p(i), a2p(i), a1(i), a2(i)); 

    K1a2 = h*G1(t(i), a1p(i), a2p(i), a1(i), a2(i)); 

    K1a2p = h*G2(t(i), a1p(i), a2p(i), a1(i), a2(i)); 

     

    K2a1 = h*F1(t(i) + h/2, a1p(i) + K1a1p/2, a2p(i) + K1a2p/2, a1(i) + K1a1/2, a2(i) + K1a2/2); 

    K2a1p = h*F2(t(i) + h/2, a1p(i) + K1a1p/2, a2p(i) + K1a2p/2, a1(i) + K1a1/2, a2(i) + K1a2/2); 

    K2a2 = h*G1(t(i) + h/2, a1p(i) + K1a1p/2, a2p(i) + K1a2p/2, a1(i) + K1a1/2, a2(i) + K1a2/2); 

    K2a2p = h*G2(t(i) + h/2, a1p(i) + K1a1p/2, a2p(i) + K1a2p/2, a1(i) + K1a1/2, a2(i) + K1a2/2); 

     

    K3a1 = h*F1(t(i) + h/2, a1p(i) + K2a1p/2, a2p(i) + K2a2p/2, a1(i) + K2a1/2, a2(i) + K2a2/2);  

    K3a1p = h*F2(t(i) + h/2, a1p(i) + K2a1p/2, a2p(i) + K2a2p/2, a1(i) + K2a1/2, a2(i) + K2a2/2);  

    K3a2 = h*G1(t(i) + h/2, a1p(i) + K2a1p/2, a2p(i) + K2a2p/2, a1(i) + K2a1/2, a2(i) + K2a2/2);  

    K3a2p = h*G2(t(i) + h/2, a1p(i) + K2a1p/2, a2p(i) + K2a2p/2, a1(i) + K2a1/2, a2(i) + K2a2/2);  

     

    K4a1 = h*F1(t(i) + h, a1p(i) + K3a1p, a2p(i) + K3a2p, a1(i) + K3a1, a2(i) + K3a2); 

    K4a1p = h*F2(t(i) + h, a1p(i) + K3a1p, a2p(i) + K3a2p, a1(i) + K3a1, a2(i) + K3a2); 

    K4a2 = h*G1(t(i) + h, a1p(i) + K3a1p, a2p(i) + K3a2p, a1(i) + K3a1, a2(i) + K3a2); 

    K4a2p = h*G2(t(i) + h, a1p(i) + K3a1p, a2p(i) + K3a2p, a1(i) + K3a1, a2(i) + K3a2); 

     

    a1p(i + 1) = a1p(i) + (1/6)*(K1a1p + 2*K2a1p + 2*K3a1p + K4a1p); 

    a2p(i + 1) = a2p(i) + (1/6)*(K1a2p + 2*K2a2p + 2*K3a2p + K4a2p); 

    a1(i + 1) = a1(i) + (1/6)*(K1a1 + 2*K2a1 + 2*K3a1 + K4a1); 

    a2(i + 1) = a2(i) + (1/6)*(K1a2 + 2*K2a2 + 2*K3a2 + K4a2); 

    a1p(i + 1) = k1*a1p(i + 1);  

    a2p(i + 1) = k2*a2p(i + 1); % Damping the angular velocities. 

end 

 

% Define {X1, Y1, X2, Y2} for the plots below as the whole array of {a1, a2}: 

X1 = r1 * sin(a1); 

Y1 = -r1 * cos(a1); 

X2 = r1 * sin(a1) + r2 * sin(a2); 

Y2 = -r1 *cos(a1) - r2 * cos(a2); 

 

% Important plots: 

figure(1) % Displays the trajectory over the tspan. 

plot(X1, Y1, 'LineWidth', 3) % The whole of x1, y1. 
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hold on 

plot(X2, Y2, 'r', 'LineWidth',1) % The whole of x2, y2. 

hold off 

xlabel('X', 'FontSize', 14); 

ylabel('Y', 'FontSize', 14); 

title('Trajectory of the Two-Pendulum System', 'FontSize',14) 

legend('Rod 1', 'Rod 2') 

 

figure(2) 

subplot(1, 2, 1) 

plot(t, a1(:), 'k', 'LineWidth', 1) 

hold on 

plot(t, a2(:), 'r', 'LineWidth', 1) % Plot ang. displacement arrays over time 

hold off 

title('Chaos via \theta_1 and \theta_2 initial conditions'); 

legend('\theta_1', '\theta_2') 

xlabel('time'); 

ylabel('\theta_j (rads)'); 

 

% Angular velocity test over the entire time-span: 

subplot(1, 2, 2) 

plot(t, a1p, 'LineWidth', 1) 

hold on 

plot(t, a2p, 'LineWidth', 1) 

hold off 

xlabel('time', 'FontSize', 13) 

ylabel('Angular Velocity (rad/s)', 'FontSize', 13) 

legend('d(\theta_1)/dt', 'd(\theta_2)/dt') 

title('Angular Velocities vs. time', 'FontSize', 15) 

% Energy Plot to test accuracy (should be constant Energy w/no damping case): 

T_1 = (1/2)*m1*r1*r1*a1p.*a1p; 

T_2 = (1/2)*m2*(r1*r1*a1p.*a1p + r2*r2*a2p.*a2p + 2*r1*r2*a1p.*a2p.*cos(a1-a2)); 

T = T_1 + T_2; % Kinetic Energy 

V = -(m1 + m2)*g*r1*cos(a1) - m2*g*r2*cos(a2); % Potential Energy 

E = abs(T) + abs(V); 

avg_E = mean(E) 
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figure(4) 

subplot(2, 2, [3, 4]) 

plot(t, E, 'LineWidth', 2) 

xx = [0:0.5:t(end)]; % Because the yline function does not work on Octave... 

hold on 

plot(xx, avg_E, 'r', 'LineWidth', 1) % Should average out to approx. 0, minimizing noise. 

hold off 

xlabel('time') 

ylabel('Energy') 

title('Energy vs. Time', 'FontSize', 13.5) 

subplot(2, 2, 1) 

plot(t, V, 'LineWidth', 2) 

xlabel('time') 

ylabel('Potential Energy') 

title('V vs. time') 

subplot(2, 2, 2) 

plot(t, T, 'LineWidth', 2) 

xlabel('time') 

ylabel('Kinetic Energy') 

title('T vs. time') 

figure(6) 

plot(a1, a2, 'b') 

title('Phase portrait of displacements') 

xlabel('Pendulum 1 angular displacement (rad)') 

ylabel('Pendulum 2 angular displacement (rad)') 

figure(7) 

plot(a1p, a2p, 'r') 

title('Phase portrait of velocities') 

xlabel('Pendulum 1 angular velocity (rad/s)') 

ylabel('Pendulum 2 angular velocity (rad/s)') 

 % ctrl + shift + R to uncomment code. 

for i = 1:length(t) - 1 

  % The co-ordinate system: 

  x1 = r1 * sin(a1(i)); 

  y1 = -r1 * cos(a1(i)); 

  x2 = r1 * sin(a1(i)) + r2 * sin(a2(i)); 
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  y2 = -r1 *cos(a1(i)) - r2 * cos(a2(i)); 

 

  % Begins the figure animation... 

  figure(8) 

  plot(x1, y1, 'ko', 'MarkerSize', m1*10); % First bob marker swinging. 

  hold on 

  line([0 x1], [0 y1]) 

  plot(x2, y2, 'ko', 'MarkerSize', m2*10); % Second bob marker swinging. 

  line([x1 x2], [y1 y2]) 

  plot(0, 0, 'ro') % Demonstrating it is in fact a fixed origin. 

  hold off 

  grid on 

  xlim([-r1-r2-1 r1+r2+1]) % Axis limits 

  ylim([-r1-r2-1 r1+r2+1]) % Axis limits 

  title(['t = ' num2str(t(i))]); 

  drawnow; 

end 

 

 

 


