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Introduc)on 

The aim of this project is to explore the use of Varia%onal Autoencoders (VAEs) in tackling 

the issue of imbalanced datasets using the MNIST dataset. The project focuses on genera?ng 

synthe?c data via a VAE to oversample underrepresented classes, balancing the dataset and 

evalua?ng both datasets on a Mul%layer Perceptron. Addi?onally, this project delves deep 

into the VAE model by examining its latent space, which can reveal valuable insights about 

how the model learns representa?ons of the data. Although the MNIST dataset does not have 

widely imbalanced classes, it was primarily used to examine the latent space of the model 

more intui?vely. This project is therefore a combina?on of delving deep into a specific model 

and programming an applica?on of its use-case (both op?ons). 

 

The inspira?on behind this project came from an ar?cle (Jordan, 2018) that visualizes the 

latent space and explains VAEs intui?vely. As an extension to this ar?cle, further visualiza?ons 

of the latent space with different parameters were done along with an applica?on in 

oversampling imbalanced datasets. 

 

Varia)onal Autoencoders (VAE) 

VAE Fundamentals 

The Varia?onal Autoencoder (VAE) works by inser?ng a stochas?c element into its latent 

space. Instead of encoding the input directly into a low dimensional representa?on, the VAE 

encodes the latent space as a probability distribu?on, calcula?ng the mean and variance of 

the latent vectors. These vectors are sampled using the reparameteriza?on trick and are 

compared to a prior distribu?on (in this project, we set this as the normal distribu?on). The 

stochas?c elements are called the latent aSributes which describe different characteris?c cs 

of the input data. This probabilis?c nature of the VAE’s latent space is what differen?ates them 

from determinis?c models like transformers. 

 

Loss Func%on 
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The VAE combines principles from Bayesian sta?s?cs and neural networks, making it 

par?cularly useful for genera?ve tasks. The model’s architecture includes key components 

such as Kullback-Leibler Divergence (KLD) and Binary Cross Entropy (BCE), which combine to 

form the loss func?on that is used to train the model. These will be further explained in the 

applica?on part of the guide, where a simpler version of the KLD which uses the normal 

distribu?on as a prior probability distribu?on was used. 

 

Applica%on of the model and outputs 

The encoder and decoder phases of the model are described in Code Snippet 1 (CS 1), where 

the input data is first flaSened into a vector of 28 x 28 = 784 elements (equivalent to pixel size 

of MNIST images). Next, it is passed through a fully connected layer with 200 neurons 

compressing the input data, it is then passed into the latent dimension with 200 elements and 

dimensionality equivalent to the code_size. This dimension parameter controls how many 

latent aSributes we have, where latent aSributes explain the variability in the data. In the 

VAE, the mean and variance are computed, defined as loc and scale in the code snippet: 

• loc: The mean of the learned latent distribu?on. 

• scale: The standard devia?on (or variance) of the learned latent distribu?on, where 

the so_ plus ac?va?on func?on ensures posi?ve values. 

The decoder phase takes the input of the has the same dimensions of the encoder but in 

reverse order, star?ng with the input being code_size, through a fully connected layer and 

expanding the latent representa?on back to 28 x 28, reconstruc?ng the image. 
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Code Snippet 1. The encoder and decoder definitions of our VAE model. 

In CS 2, we can see the VAE model defined as containing the previously mentioned 

encoder and decoder architecture from CS 1. In the forward pass function, the loc and 

scale are obtained as an output from the encoder and the reparameterization trick is 

used. The reparameterization trick is sampling a point from a standard normal 

distribution (mean 0, variance 1) with the same shape as std. This random value 

represents the noise component needed to introduce stochasticity in the latent space, 

allowing us to generate new unseen samples. This value is then passed through the 

decoder, representing the input. 
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Code Snippet 2. VAE model combining both the encoder and decoder, including the reparameterization trick. 

The total loss function is defined in CS 3 as a combination of BCE and KLD. The BCE loss 

measures the diRerence between the reconstructed data, recon_x and the input, x. The 

KLD on the other hand measures the diRerence between two probability distributions. It 

measures how close the distribution between the two latent variables, loc and scale (or 

mean and variance) are to the normal distribution (mean=0 and variance = 1). KLD acts 

as a regularization term by encouraging the latent space to be like a standard normal 

distribution and prevents overfitting by ensuring the latent variables follow a smooth, 

continuous distribution. The original paper on VAEs contains more information and 

derivations of the KLD and other loss functions that could possibly be used such as 

Monte-Carlo sampling (Kingma, 2013) 

 

 
Code Snippet 3. The loss function for our VAE defined as BCE+KLD. 
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Preprocessing and training the models 

The dataset is loaded and a batch size of 100 is set throughout this report, where the batch 

size controls how o_en we update the gradient during backpropaga?on. Three models are 

instan?ated with different dimensions in their latent space: 2, 10 and 100. These models are 

then trained for 25 epochs where the training loop can be seen in CS 4 where the gradient is 

stored for each input and updated on every 100th input. Adam (Adap?ve Moment Es?ma?on), 

a version of gradient descent that dynamically adjusts the learning rate is used as the 

op?miza?on func?on during training, with learning rate set to 0.001. The func?ons defined in 

previous code snippets are used in the training loop and the model is set to evalua?on mode, 

and gradient updates have been turned off to finally test the model. 

 

 
Code Snippet 4. The training loop for multiple VAE models with diIerent dimensions in their latent space, then 
added to a dictionary called trained_models. 

 

 



  13528904 – George Luther 

Exploring the latent space using different code_size 

The code_size refers to the number of dimensions in the latent space. In a VAE, the number 

of dimensions refer to two vectors which are described by a mean and variance. In Figure 1, 

we can see a that when the latent space is set to 2-dimensions (i.e., code_size=2) using PCA 

for dimensionality reduc?on on the encoded data, the classes are more separable as the 

model only relies on these two dimensions to capture the paSerns within the data. When we 

include 10 or 100 dimensions to describe the MNIST data, projec?ng this higher dimensional 

representa?on into two dimensions using PCA results in less visible variance. This occurs 

because the other dimensions encode various other characteris?cs of the digits, such as 

different strokes, thickness of lines, sharp edges of digits that cannot all be captured in a 2D 

projec?on. 
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Figure 1. DiIerent dimensions of the latent space for the MNIST data. 
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Figure 2 shows the latent space of a 2-dimensional VAE. In this example, we traverse the 

2-dimensional latent space at each coordinate and pass the coordinate through the 

decoder, allowing us to visualize the distribution of the latent space. In this image, we can 

see digits with similar characteristics closer together. For example, digit 1 is in the top-

left hand corner and slowly transitions to 9, i.e., the model determines that these digits 

have similar characteristics and places them near each other in the latent space. 

Because the number of dimensions is limited, the other digits are less distinct or 

“fuzzified” but can be distinguished. 

 
Figure 2. The latent space of a 2-dimensional VAE projected into a grid. 
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Oversampling with VAEs 

Referring to Figure 3, we can see the distribu?on of the MNIST data where the dataset is not 

balanced. This provides an opportunity to generate synthe?c data learned on the training 

samples and run the model through a Mul?layer perceptron and assess model performance.   

In this sec?on, we use the same model architecture and parameters from CS 1-3 to provide a 

solu?on for imbalanced datasets. 

 

 
Figure 3. The class distribution of the MNIST dataset. 

Ini?ally, we train 10 different VAE models, one for each class of the MNIST digit.  These models 

are stored in a dic?onary and accessed at a later stage to sample points from the latent space 

of each model. CS 5 shows the training of the model, where 50 epochs were used with a batch 

size of 100.  
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Code Snippet 5. The code used to create 10 diIerent VAE models, one for each class label in the MNIST dataset. 

 
Synthe?cally generated inputs that we will be using as training data are shown in Figure 4, 

where the digits are seen as noisy. This is a typical output from a VAE as it generates points 

from a distribu?on. A_er this stage, 10,000 inputs are generated for each class and are used 

as training. The test set was the unseen MNIST data that was held-out when training. CS 6 

shows a simple MLP architecture used to train the synthe?c and original inputs. Here, the 

model has a 28 x 28 = 784 input along with a fully connected layer with 200 neurons. The final 

layer contains 10 neurons where a so_-max func?on is applied to squeeze the values across 

all classes between 0 and 1, where the neuron with the highest value is the class that is 

selected by the model. 
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Figure 4. Synthetically generated inputs used as training from each VAE model, one for each class. 

 

 
Code Snippet 6. MLP classifier used to train synthetic and non-synthetic data. 

 

6. Handling Imbalanced Datasets 

The MNIST dataset is slightly imbalanced, with certain digits being more frequent than others. 

To address this, we used the VAE to generate synthe%c samples for the underrepresented 

classes. These synthe?c samples were added to the training set to balance the dataset. Two 

models were trained, one with synthe?c and one with the non-synthe?c samples and 

evaluated. Figures 5-6 show the confusion matrix for a basic MLP model trained on 

Imbalanced (Original) MNIST data and synthe?c data, respec?vely. The original dataset 
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outperformed the synthe?cally generated one based on the confusion matrix. The original 

data had a hard ?me differen?a?ng between 2 and 7, and 4 and 9, where the synthe?cally 

trained model had a hard ?me differen?a?ng between 5 and 8, and 5 and 3. The synthe?cally 

trained model relies on the output of a VAE as input where 5, 3, and 8 are mapped around the 

same space. Thus, a synthe?cally generated 5 could have some aSributes of 3 and 8, and vice 

versa, explaining this phenomenon. The original and synthe?cally trained models had an 

accuracy score across all 10 class labels of 98.05% and 89.60% respec?vely, where the original 

data outperformed synthe?c by 8.45%. This shows that the synthe?cally generated dataset is 

not useful in this context of slightly imbalanced classes. However, with further 

hyperparameter fine-tuning and construc?on of the latent space, model performance can 

poten?ally exceed the original data by introducing gaussian varia?ons to the input that act as 

a regulariza?on term.  

 

 
Figure 5. Confusion Matrix for an MLP trained on an Imbalanced Dataset. 
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Figure 6. Confusion Matrix for an MLP trained on a Synthetically Generated Dataset via a VAE. 

 
In Figure 7, we see the MLP models predic?ons, trained on the imbalanced MNIST dataset, 

where it struggles with certain class predic?ons. Digits such as 2, 7, 4 and 9 appear to be 

challenging for the model to differen?ate. This confusion may be due to the visual similari?es 

between the shapes of these digits, especially when the digits are wriSen in an italics style, 

where they appear ambiguous even to the human eye. For instance, handwriSen 7s may 

some?mes be mistaken for 2s if the wri?ng style lacks dis?nct features and vice versa. 

 
Figure 7. Misclassified Images for an MLP model trained with the original MNIST data. 
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Figure 8 illustrates incorrectly predicted class labels for an MLP model trained on 

synthetically generated data. The MLP model has diRiculty distinguishing between digits 

like 5, 8, and 3, where the latent space created by the Variational Autoencoder might have 

mapped these digits close together, also supported by the confusion matrix in Figure 6. 

This results in overlapping features being assigned to diRerent classes. For example, 

synthetic digits generated by the VAE for the 5 class could share attributes with the 3 or 8 

class, leading to misclassification. We suggest that while VAEs are useful for generating 

synthetic data, fine-tuning of the latent space is required to ensure that there is no 

confusion for classes with similar characteristics. 

 
Figure 6. Misclassified Images for an MLP model trained with the original MNIST data. 

 
Concluding Remarks 

In conclusion, the latent space was thoroughly examined in a VAE model with different 

dimensions. It was found that an increase in the dimension decreases the variability between 

two principal components as there are more latent aSributes to explain variability. When 

synthe?c and original MNIST data were compared in an MLP model, the MLP that was trained 

on the original data outperformed the synthe?c version by 8.45%. 

 

The intui?on behind why this oversampling with a poten?al model performance improvement 

would prove useful was due to the gaussian noise that a VAE can add from genera?ng 

synthe?c data, ac?ng as a regulariza?on factor and generalizing beSer to unseen data. In this 

project, this was not confirmed due to ?me and computa?on constraints however, with more 

hyperparameter fine-tuning and experimenta?on on different datasets, this approach could 

poten?ally prove useful in boos?ng model performance. 
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